Asymptotic Liapunov Exponents Spectrum For An Extended Chaotic Coupled Map Lattice

نویسنده

  • D. Volchenkov
چکیده

The scaling hypothesis for the coupled chaotic map lattices (CML) is formulated. Scaling properties of the CML in the regime of extensive chaos observed numerically before is justified analytically. The asymptotic Liapunov exponents spectrum for coupled piece-wise linear chaotic maps is found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kato's chaos and P-chaos of a coupled lattice system given by Garcia Guirao and Lampart which is related with Belusov-Zhabotinskii reaction

In this article, we further consider the above system. In particular, we give a sufficient condition under which the above system is Kato chaotic for $eta=0$ and a necessary condition for the above system to be Kato chaotic for $eta=0$. Moreover, it is deduced that for $eta=0$, if $Theta$ is P-chaotic then so is this system, where a continuous map $Theta$ from a compact metric space $Z$ to itse...

متن کامل

Transitivity and blowout bifurcations in a class of globally coupled maps Paul

A class of globally coupled one dimensional maps is studied. For the uncoupled one dimensional map it is possible to compute the spectrum of Liapunov exponents exactly, and there is a natural equilibrium measure (Sinai-Ruelle-Bowen measure), so the corresponding `typical' Liapunov exponent may also be computed. The globally coupled systems thus provide examples of blowout bifurcations in arbitr...

متن کامل

A Comparison of Polynomial and Wavelet Expansions for the Identification of Chaotic Coupled Map Lattices

A comparison between polynomial and wavelet expansions for the identification of coupled map lattice (CML) models for deterministic spatio-temporal dynamical systems is presented in this paper. The pattern dynamics generated by smooth and non-smooth nonlinear maps in a well-known 2-dimensional CML structure are analysed. By using an orthogonal feedforward regression algorithm (OFR), polynomial ...

متن کامل

Persistence at the onset of spatiotemporal intermittency in coupled map lattices

– We study persistence in coupled circle map lattices at the onset of spatiotemporal intermittency, an onset which marks a continuous transition, in the universality class of directed percolation, to a unique absorbing state. We obtain a local persistence exponent of θl = 1.49± 0.02 at this transition, a value which closely matches values for θl obtained in stochastic models of directed percola...

متن کامل

2 Se p 19 97 FUZZY PHASE TRANSITION IN A 1 D COUPLED STABLE - MAP LATTICE

A coupled-map lattice showing complex behaviour in presence of a fully negative Lyapunov spectrum is considered. A phase transition from ordered to disordered evolution, upon changing diffusive coupling is studied in detail. Various indicators provide a coherent description of the scenario: the existence of an intermediate transition region characterized by an irregular alternancy of periodic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008